Parametrized experiments#
Fixed and variable parameters#
Parametrized experiments allow you to control and differentiate the behaviour of runs:
-
Parameter grids are grids of parameters with a discrete number of values for each, can be set on
runs
usingExperiment.add_runs(A=[1,2,...], B=...)
and are accessible within therun
atrun.params
. -
Configuration parameters are fixed for all
runs
, can be accessed atrun.config
and are set by passingconfig={A=1, B=2, ...}
toExperiment.execute
. The value is the same for allruns
.
In the next example:
-
We define a fixed configuration parameter
X
. We use a parameter grid, similarly tosklearn.model_selection.ParameterGrid
, to definerun
parametersA
andB
. -
We execute the step function
step_sum
, summing up the value ofA
,B
andX
. -
We persist and query the experiment as a Pandas dataframe.
Creating an experiment
Tip
The attributes run.config
and run.params
are not persisted to database by default.
You can request its transparent persistence with Experiment.execute(...., args_field="args")
,
which will persist/reload config/params to/from run.fields.args
.
Congratulations!
You know how to define parameter grids and explore the impact of varying parameters on evaluation metrics.